poj 2187 Beauty Contest

这个题我是按照discussion里面的说法,先求凸包,然后枚举过的。因为开始先把求凸包算法里面的用到了数组名搞混了,无故wa了好多次。后面求凸包换了种算法过了。结果发现bug是搞混了数组名,然后把前面wa掉的代码下载下来,改好之后也都过了。
这个题主要是凸包算法需要处理有重复点,有多点共线之类的情况。那个按极角排序后,再求凸包的算法,对共点共线处理的不是很好,不过那个算法也过了这个题。有个直接按坐标排序后,再求上凸包和下凸包的算法,可以处理共点共线的情况。这个算法比较优美啊,既不需要找y坐标最小的点,也不需要按极角排序,直接按坐标排序下,然后求凸包即可。
这个算法的一点解释:http://www.algorithmist.com/index.php/Monotone_Chain_Convex_Hull
另外,演算法笔记:http://www.csie.ntnu.edu.tw/~u91029/ConvexHull.html#a3上也有提到这个算法,我也是从这上面看到的。
这个算法可以假设是Graham排序基准点在无限远处,于是夹角大小的比较可以直接按水平坐标比较。

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#include <stdio.h>
#include <algorithm>
#include <math.h>
using namespace std;
struct Point
{
int x, y;
bool operator<(const Point p) const
{
return x < p.x || x == p.x y < p.y;
}
};
Point pts[50100];
Point pcs[50100];
int nN;
int nM;
inline int SDis(const Point a, const Point b)
{
return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
}

double Det(double fX1, double fY1, double fX2, double fY2)
{
return fX1 * fY2 - fX2 * fY1;
}

double Cross(Point a, Point b, Point c)
{
return Det(b.x - a.x, b.y - a.y, c.x - a.x, c.y - a.y);
}

void Convex()
{
sort(pts, pts + nN);

nM = 0;
for (int i = 0; i < nN; ++i)
{
while(nM >= 2 Cross(pcs[nM - 2], pcs[nM - 1], pts[i]) <= 0)
{
nM--;
}
pcs[nM++] = pts[i];
}
for (int i= nN - 2, t = nM + 1; i >= 0; --i)
{
while (nM >= t Cross(pcs[nM - 2], pcs[nM - 1], pts[i]) <= 0)
{
nM--;
}
pcs[nM++] = pts[i];
}
nM--;//起点会被重复包含
}

int main()
{
while (scanf("%d", nN) == 1)
{
for (int i = 0; i < nN; ++i)
{
scanf("%d%d", pts[i].x, pts[i].y);
}
Convex();
int nMax = -1;
for (int i = 0; i < nM; ++i)
{
for (int j = i + 1; j < nM; ++j)
{
nMax = max(nMax, SDis(pcs[i], pcs[j]));
}
}
printf("%d\n", nMax);
}

return 0;
}

也可以用旋转卡壳算法来求最远点对,此题的完整代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <vector>
#include <algorithm>
using namespace std;

struct Point
{
int x, y;
bool operator < (const Point p)const
{
return x < p.x || x == p.x y < p.y;
}
};

double Det(double fX1, double fY1, double fX2, double fY2)
{
return fX1 * fY2 - fX2 * fY1;
}

double Cross(Point a, Point b, Point c)
{
return Det(b.x - a.x, b.y - a.y, c.x - a.x, c.y - a.y);
}

//输入点集合,输出凸包
void Convex(vector<Point> in, vector<Point> out)
{
int nN = in.size();
int nM = 0;

sort(in.begin(), in.end());
out.resize(nN);

for (int i = 0; i < nN; ++i)
{
while (nM >= 2 Cross(out[nM - 2], out[nM - 1], in[i]) <= 0)
{
nM--;
}
out[nM++] = in[i];
}

for (int i = nN - 2, t = nM + 1; i >= 0; --i)
{
while (nM >= t Cross(out[nM - 2], out[nM - 1], in[i]) <= 0)
{
nM--;
}
out[nM++] = in[i];
}
out.resize(nM);
out.pop_back();//起始点重复
}

int SDis(Point a,Point b)
{
return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
}

int RC(vector<Point> vp)
{
int nP = 1;
int nN = vp.size();
vp.push_back(vp[0]);
int nAns = 0;
for (int i = 0; i < nN; ++i)
{
while (Cross(vp[i], vp[i + 1], vp[nP + 1]) > Cross(vp[i], vp[i + 1], vp[nP]))
{
nP = (nP + 1) % nN;
}
nAns = max(nAns, max(SDis(vp[i], vp[nP]), SDis(vp[i + 1], vp[nP + 1])));
}
vp.pop_back();
return nAns;
}

int main()
{
int nN;
vector<Point> in, out;
Point p;
while (scanf("%d", &nN) == 1)
{
in.clear(), out.clear();
while (nN--)
{
scanf("%d%d", p.x, p.y);
in.push_back(p);
}
Convex(in, out);

printf("%d\n", RC(out));
}

return 0;
}

关于旋转卡壳的算法描述,网上有很多资料,比如,http://www.cppblog.com/staryjy/archive/2010/09/25/101412.html尤其关于这个求最远点对的。