opencv实现快速傅立叶变换和逆变换

说实话觉得网上很多人转载的文章的挺坑的,全部是opencv文档程序的翻译,看来看去都是那一
篇,真的没啥意思。文档的地址
本来opencv实现dft就是一个函数的事情,但是很少有关于逆变换使用的资料。我这几天在翻译
matlab版本的L0Smooth到opencv上面,就碰到这样一件很坑爹的事情。
首先,很少有人说清楚这个函数的使用方法。还有,根据教程,dft之前最好扩充原矩阵到合适的尺
寸(2,3,5的倍数),再调用dft会加快速度。那么,idft的时候了?如何恢复原有的尺寸?
在我的L0Smooth代码里,就碰到这样的事情了。如果,图片尺寸是2,3,5的倍数,那么能够得到
正确结果。否则得到是全黑的图片。如果,我不扩张矩阵,那么就能正确处理。
所以,到这里,我不推荐调用dft之前先扩充矩阵了。因为,我找了很久也没找到解决办法。
我数学水平有限,也分析不出原因,也没有时间去系统的学习这些了。
这里提供两个例子,说明dft和idft的使用。
例子一:类似于opencv官方文档的例子

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>

#ifdef _DEBUG
#pragma comment(lib, "opencv_core247d.lib")
#pragma comment(lib, "opencv_imgproc247d.lib")
#pragma comment(lib, "opencv_highgui247d.lib")
#else
#pragma comment(lib, "opencv_core247.lib")
#pragma comment(lib, "opencv_imgproc247.lib")
#pragma comment(lib, "opencv_highgui247.lib")
#endif // DEBUG

int main()
{
// Read image from file
// Make sure that the image is in grayscale
cv::Mat img = cv::imread("lena.JPG",0);

cv::Mat planes[] = {cv::Mat_<float>(img), cv::Mat::zeros(img.size(), CV_32F)};
cv::Mat complexI; //Complex plane to contain the DFT coefficients {[0]-Real,[1]-Img}
cv::merge(planes, 2, complexI);
cv::dft(complexI, complexI); // Applying DFT

//这里可以对复数矩阵comlexI进行处理

// Reconstructing original imae from the DFT coefficients
cv::Mat invDFT, invDFTcvt;
cv::idft(complexI, invDFT, cv::DFT_SCALE | cv::DFT_REAL_OUTPUT ); // Applying IDFT
cv::invDFT.convertTo(invDFTcvt, CV_8U);
cv::imshow("Output", invDFTcvt);

//show the image
cv::imshow("Original Image", img);

// Wait until user press some key
cv::waitKey(0);

return 0;
}

代码意思很简单,dft之后再idft,注意参数额,必须有DFT_SCALE。代码中,先merge了个
复数矩阵,在例子2中可以看到,其实这一步可以去掉。
例子2:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>

#ifdef _DEBUG
#pragma comment(lib, "opencv_core247d.lib")
#pragma comment(lib, "opencv_imgproc247d.lib")
#pragma comment(lib, "opencv_highgui247d.lib")
#else
#pragma comment(lib, "opencv_core247.lib")
#pragma comment(lib, "opencv_imgproc247.lib")
#pragma comment(lib, "opencv_highgui247.lib")
#endif // DEBUG

int main()
{
// Read image from file
// Make sure that the image is in grayscale
cv:;Mat img = cv::imread("lena.JPG",0);

cv::Mat dftInput1, dftImage1, inverseDFT, inverseDFTconverted;
cv::img.convertTo(dftInput1, CV_32F);
cv::dft(dftInput1, dftImage1, cv::DFT_COMPLEX_OUTPUT); // Applying DFT

// Reconstructing original imae from the DFT coefficients
cv::idft(dftImage1, inverseDFT, cv::DFT_SCALE | cv::DFT_REAL_OUTPUT ); // Applying IDFT
cv::inverseDFT.convertTo(inverseDFTconverted, CV_8U);
cv::imshow("Output", inverseDFTconverted);

//show the image
cv::imshow("Original Image", img);

// Wait until user press some key
waitKey(0);
return 0;
}

从代码中可以看到,dft时候添加参数DFT_COMPLEX_OUTPUT,就可以自动得到复数矩阵了,代码更加简洁。
注意,必须先将图片对应的uchar矩阵转换为float矩阵,再进行dft,idft,最后再转换回来。