hdu 4294 Multiple 数论 + bfs

这是前天成都网赛的题,比赛时候确实一点思路也没有。比完之后看了人家的解题报告,还是不会怎么搜出答案,太弱了。
题意是给出N,K,求M,使得M是N的正倍数,而且M用K进制表示后所需要的不同数字(0,1,2,3,…,k-1)最少,如果有多组这样的情况,求出最小的M。很数学的题意。
用到了一个结论,就是任意数字的正倍数均可以用不超过2个不同数字的数得到。
证明如下:
任意数M % N 总共有N种结果,假如有N+1个不同的M,那么肯定有2个M对N取模后的结果是相同,这个是所谓鸽巢原理。那么,我取a,aa,aaa,…,aaaaaaaaaa….,总共N+1个,同样满足上面的结论。那么我取那2个对N取模相同的数字相减得到数字aaaaa…000….,这个数字肯定是N的倍数。
综合上面的证明,只能得到2个数字肯定能表示N的倍数。但是不能说形式就是aaaaa…000….。

到了这里我还是一点思路都没有,一点都不知道怎么搜索。。。
想了1个多小时,无头绪,问过了这题的同学,还是无头绪。看解题报告,他们的代码写得太牛了,完全看不懂,无头绪。也许也是我对bfs理解太浅,才看不懂他们的搜索代码。而且,我连可以搜索的地方都没有找到,都不知道搜什么了。
想了好久,昨天吃饭的时候,终于发现可以对余数进行搜索。
对于任意的N,其余数就是范围是[0, N -1]。这个其实就可以代表状态了,或者代表bfs中的点了。从当前余数转移到其它余数的是MOD K + A 或者 MOD K + B,如果要转移到得余数以前没被搜过,那就可以转移过去。这个刚好就是一个优化了。也可以看成是子问题了。但是,dfs完全不行。刚开始用dfs,绝对的超时。
用dfs也是我对思路理解不深,侥幸认为能过。。。后面发现,这题完全和bfs吻合。[0, N -1]刚好代表N个点,我要通过从外面的一个点,最短的遍历到点0,可以bfs或者最短路算法。这题我觉得还有个难点就是保存答案,因为答案最长的长度可能是N(N<=10000),所以把答案直接放到节点里面肯定不行的。但是,我还仔细看过算法导论。因此想到了可以利用bfs搜索出来的那颗树或者最短路算法跑出来的那颗树,从目标节点逆序寻找答案,找到出发节点之后,再把答案reverse一下就行了。
这题还得注意0不能是N的倍数,所以注意bfs(0,i)这种情况的处理。

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#include <stdio.h>
#include <string.h>
#include <queue>
#include <algorithm>
using namespace std;

const int MAX_N = 10010;
int nOut[MAX_N];
int nOLen;
int nAns[MAX_N];
int nALen;
bool bMod[MAX_N];
int nFather[MAX_N];
int nChoose[MAX_N];
int nN;
int nK;
bool bFind;

int Cmp(int* A, int nLA, int* B, int nLB)
{
if (nLA != nLB)
{
return nLA - nLB;
}
for (int i = 0; i < nLA; ++i)
{
if (A[i] != B[i])
{
return A[i] - B[i];
}
}
return 0;
}

void Bfs(int nA, int nB)
{
memset(bMod, false, sizeof(bMod));
queue<int> que;
que.push(0);
int nTemp;
bool bFirst = true;
bFind = false;

if (nA > nB)swap(nA, nB);
//printf("nA:%d, nB:%d\n", nA, nB);
while (!que.empty())
{
//printf("nMod:%d\n", que.front());
int nMod = que.front();
que.pop();
if (nMod == 0)
{
if (bFirst)bFirst = false;
else
{
bFind = true;
break;
}
}

nTemp = (nMod * nK + nA) % nN;
if (!(nMod == 0 nA == 0) !bMod[nTemp])
{
nFather[nTemp] = nMod;
nChoose[nTemp] = nA;
que.push(nTemp);
bMod[nTemp] = true;
//printf("nTemp:%d\n", nTemp);
}
if (nA == nB)continue;
nTemp = (nMod * nK + nB) % nN;
if (!bMod[nTemp])
{
nFather[nTemp] = nMod;
nChoose[nTemp] = nB;
que.push(nTemp);
bMod[nTemp] = true;
//printf("nTemp:%d\n", nTemp);
}
}

if (bFind)
{
int nF = 0;
nALen = 0;
do
{
nAns[nALen++] = nChoose[nF];
nF = nFather[nF];
}
while (nF);
reverse(nAns, nAns + nALen);
}
}

int main()
{
while (scanf("%d%d", &nN, &nK) == 2)
{
bool bOk = false;
nOLen = 0;
for (int i = 1; i < nK; ++i)
{
Bfs(i, i);
if (bFind)
{
if (nOLen == 0 || Cmp(nOut, nOLen, nAns, nALen) > 0)
{
nOLen = nALen;
memcpy(nOut, nAns, sizeof(int) * nALen);
}
bOk = true;
}
}
if (!bOk)
for (int i = 0; i < nK; ++i)
{
for (int j = i + 1; j < nK; ++j)
{
Bfs(i, j);
if (bFind)
{
if (nOLen == 0 || Cmp(nOut, nOLen, nAns, nALen) > 0)
{
nOLen = nALen;
memcpy(nOut, nAns, sizeof(int) * nALen);
}
}
}
}
for (int k = 0; k < nOLen; ++k)
{
printf("%d", nOut[k]);
}
printf("\n");
}

return 0;
}